R4P 2021: Updates on the HIV Prevention Pipeline

Craig W. Hendrix, MD
Wellcome Professor and Director, Division of Clinical Pharmacology
Departments of Medicine and Pharmacology
Johns Hopkins University, Baltimore, MD

This activity is jointly provided by Physicians’ Research Network and the Medical Society of the State of New York.
Disclosures

• **Research grants**: Gates, ViiV/GSK, Merck, & Gilead managed by JHU

• **Advisory Board**: Population Council, RTI, PREVENT Program, Gilead, Merck, ViiV/GSK, Orion Biopharma

• **Founding Partner** Priönde Biopharma, LLC

• **US Patents** 10,092,509, 10,646,434 microbicide formulations
Objectives

- Describe benefits of PrEP choices for HIV prevention
- Understand differences of long-acting PrEP
- Discuss ongoing development of on demand PrEP
- Discuss development of multi-purpose prevention technologies (MPTs)
Objectives

- Describe benefits of PrEP choices for HIV prevention
- Understand differences of long-acting PrEP
- Discuss ongoing development of on demand PrEP
- Discuss development of multi-purpose prevention technologies (MPTs)
Years Ahead in HIV Prevention Research

Time to Market

<table>
<thead>
<tr>
<th>Prevention Product</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal Ring</td>
<td></td>
<td></td>
<td>Probable regulatory approval & early introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dapivirine Vaginal Ring</td>
<td>Positive EMA Opinion; WHO Prequalification and Recommendation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-Acting Injectables</td>
<td></td>
<td>Early JPTIN 003 and 004 results</td>
<td>Possible regulatory approval & early introduction</td>
<td>Efficacy trials of six monthly injectables</td>
<td></td>
</tr>
<tr>
<td>Lenacapavir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Prevention Pill</td>
<td></td>
<td></td>
<td></td>
<td>Possible regulatory approval & early introduction</td>
<td></td>
</tr>
<tr>
<td>TDF/FTC/C Combined oral contraceptives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral PrEP</td>
<td></td>
<td></td>
<td>Daily oral FTC/TAF efficacy trials in cisgender women</td>
<td>Monthly oral islatravir efficacy trials in MSM, TG women and cisgender women</td>
<td></td>
</tr>
<tr>
<td>FTC/TAF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilatravir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventive Vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Efficacy trials in all populations</td>
</tr>
<tr>
<td>Ad26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

March 2021
Many Factors Influence Choice

- Effectiveness does not drive all decision-making
- Perception of safety is similarly important
- Control, privacy, convenience, etc. are important, too

CHOICE: Proven Benefit in Contraception

- WHO Systematic Review (231 articles)
- CHOICE associated with better:
 - Contraceptive Uptake
 - Contraceptive Persistence
 - Health outcomes (↓ pregnancies, ↓ STIs)
- CHOICE, as with needs, vary over a lifetime

Why should PrEP be different?

- EACH add’l product option yields 12% increase in contraceptive use
- How much will it be for PrEP?

Gray AL, et al. WHO RHRU 2006

Jain AK, et al. Stud Fam Plan 1989
More CHOICE, Better Uptake & Persistence

<table>
<thead>
<tr>
<th></th>
<th>Systemic</th>
<th>Vaginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-acting</td>
<td>Injectable (3m) Implant (yrs)</td>
<td>IUD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vaginal ring</td>
</tr>
<tr>
<td>Short Acting</td>
<td>Oral (qd)</td>
<td></td>
</tr>
<tr>
<td>On Demand</td>
<td>Oral (x1 EC)</td>
<td>Barrier Film</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu IUD (x1 EC)</td>
</tr>
</tbody>
</table>

*EC emergency contraception
Oral F/TDF: 39 Incident, 3 Baseline Infections

- 37/39 infections poor precedent adherence
- Only 2 “adherent” infections, resistance
- 6 (14%) NRTI resistance

TFV-DP ≥1250 fmol/punch
TFV-DP ≥700 - <1250 fmol/punch
TFV-DP ≥350 - <700 fmol/punch
TFV-DP >LLOQ - <350 fmol/punch
TFV-DP BLQ

- First HIV positive visit and first site positive visit
- First site positive visit
- First HIV positive visit
- HIV genotyping test

Oral F/TDF: 39 Incident, 3 Baseline Infections

- 37/39 infections poor precedent adherence
- Only 2 “adherent” infections, resistance
- 6 (14%) NRTI resistance

TFV-DP ≥1250 fmol/punch
TFV-DP ≥700 - <1250 fmol/punch
TFV-DP ≥350 - <700 fmol/punch
TFV-DP >LLOQ - <350 fmol/punch
TFV-DP BLQ

- First HIV positive visit and first site positive visit
- First site positive visit
- First HIV positive visit
- HIV genotyping test
Objectives

- Describe benefits of PrEP choices for HIV prevention
- Understand differences of long-acting PrEP
- Discuss ongoing development of on demand PrEP
- Discuss development of multi-purpose prevention technologies (MPTs)
HPTN 083 Study Design

Screening day and informed consent

Step 1
- Every day for 5 weeks
- CAB

Step 2
- Weeks 5 and 9
- TDF/FTC (Every day)
- Every 2 months for approximately 3 years

Step 3
- Every day for 1 year
- TDF/FTC

Group A
- CAB
- TDF/FTC pill
- Cabotegravir (CAB) injection
- Placebo for TDF/FTC pill
- Placebo for cabotegravir (CAB) injection

Group B
- CAB
- TDF/FTC pill
- Cabotegravir (CAB) injection
- Placebo for TDF/FTC pill
- Placebo for cabotegravir (CAB) injection

Landovitz RJ et al. AIDS 2020, #OAXLB0101
CAB-LA vs. F/TDF

HIV Incidence

<table>
<thead>
<tr>
<th>HIV Incidence Rate/100 PY</th>
<th>CAB</th>
<th>F/TDF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.37</td>
<td>1.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infections</th>
<th>CAB (n = 1614)</th>
<th>F/TDF (n = 1610)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 Infections</td>
<td>0.2 (0.06-0.52)</td>
<td>1.86 (1.30-2.57)</td>
</tr>
</tbody>
</table>

Person-yrs

<table>
<thead>
<tr>
<th>Person-yrs</th>
<th>CAB</th>
<th>F/TDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>1939</td>
<td>3204</td>
<td>3187</td>
</tr>
</tbody>
</table>

Hazard ratio 0.32 (0.16, 0.58) Hazard ratio 0.11 (0.04, 0.32)

Marzinke JID 2021; Delany-Moretlwe R4P 2021 HY01.02
Hazard Ratio is CAB-LA vs. F/TDF, not placebo

Background HIV Risk
- Historically RCT Incidence \textit{CGW} > MSM/TGW

F/TDF adherence
- MSM/TGW v. high; GCW pending

F/TDF adherence-protection differences
- \textit{MSM} adherence less stringent vs. CGW; TGW (GAHT) uncertain

CAB-LA Plasma Pharmacokinetics
- Troughs favors \textit{CGW}; Peaks favor MSM/TGW; AUC similar

CAB-LA Tissue Pharmacokinetics
- \textit{Cervicovaginal} tissue \(\sim 1/6^{th}\) plasma, Colorectal tissue \(\sim 1/10^{th}\) plasma
CAB-LA Concentration Targets

- **NHP Rectal SHIV Challenge**
 - 1x - 3x PA-IC$_{90}$ 97% protective

- **NHP Vaginal SHIV Challenge**
 - >1x PA-IC$_{90}$ 100% protective

- **NHP Vaginal SHIV Challenge**
 - 4x PA-IC$_{90}$ 88% protective

- **Clinical ART Monotherapy**
 - 4x PA-IC$_{90}$ >99% HIV RNA reduction

CAB-LA did not have the same long precedent treatment history as F/TDF & F/TAF to guide PrEP development, albeit with many assumptions about relevance of treatment to prevention doses, but the successful CAB-LA/RPV-LA treatment program proceeded CAB-LA PrEP in informative ways.

Andrews Science 2014; Radzio STM 2015; Andrews STM 2015; Spreen HIV Clin Trials. 2013
Exploring Breakthrough Infections

The shaded area represents time on ART.

BLQ: Below Limit of Quantitation
ND: Not Determined
Exploring Breakthrough Infections

The shaded area represents time on ART.
Exploring Breakthrough Infections

The shaded area represents time on ART.

- **CAB concentration**
- **CAB injection**
- **First site positive visit**
- **First HIV positive visit**

- **Weeks between first HIV positive visit and the first site positive test**

The shaded area represents time on ART.
Exploring Breakthrough Infections

IN D + 263 IN D + 152,730

0.664

Weeks since enrollment

BLQ 0.166

CAB (mcg/mL)

Viral load

Confirmatory Ab test

Qualitative RNA test

Ag/Ab test

INSTI: G140A, Q148R

Undetectable on TDF/FTC/EFV

6.4W

weeks since enrollment

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

CAB concentration CAB injection First site positive visit First HIV positive visit

Weeks between first HIV positive visit and the first site positive test

The shaded area represents time on ART.
CAB-LA

- 2241 participants
- 16 total infections
- 12 incident infections
- 11 dx’d earlier by RNA testing
- 7/16 resistance-associated mutations
 - 5 ISTI (1 NNRTI) all received CAB-LA IM
 - 1 of 4 baseline - not incident
 - 2 of 3 oral lead-in
 - 2 of 4 on-time injection & expected conc’n
 - 0 of 5 tail
 - 2 NNRTI +/- NRTI

F/TDF

- 2247 participants
- 42 infections
- 39 incident
 - 37/39 poor adherence (<4/wk DBS)
- 13/42 infections resistance
 - 6 NRTI (3 also NNRTI)
 - 7 NNRTI only
Key Findings

- Oral lead-in will be optional in 083 OLE
- CAB-LA can delay detection of infection;
 - Is VL testing necessary with LA, deployable, cost-effective?
- Incident CAB arm infections despite target CAB concentrations;
 - Only 4 pts – v. low 0.4% incidence
 - 3 of 4 prior [CAB] dips (related to virologic test delay?)
- INSTI resistance
 - 38% of infections
 - Seen in active dosing, high [CAB]
 - Not seen in tail-phase infections
- F/TDF arm 37/39 incident infections poor adherence
 - CAB-LA & TDF/FTC highly effective PrEP; CAB-LA superior

Marzinke JID 2021
CAB-LA: What to improve upon?

- **HPT 083 CAB-LA “Failure” Analysis (0.4% incidence)**
 - Pharmacological Effect (25%)
 - 2 unexplained infections (*under evaluation*)
 - 2 infections due to PK variability (*TDM, dose-optimization, PrEP implants*)
 - Virologic diagnosis (25%)
 - 4 missed diagnoses at entry (*cost-benefit of sensitive virologic testing, test in OLE*)
 - 5 cases of resistance (31% of infections) might have been prevented
 - Behavioral (50%)
 - 3 adherence failures in oral lead-in
 - 5 lack of persistence (in 3,204 person-years)

- **Personal Desires & Behavior (50% of infections)**
 - Myriad variables informing adherence/persistence
 - Dislike for needles or find injection site reactions intolerable
 - Dislike systemic drug exposure
 - Lack of commitment to long-term drug exposure
HPTN 077: CAB-LA PK Variability

A Male participants

B Female participants

<table>
<thead>
<tr>
<th>Simple linear regression</th>
<th>Multivariable linear regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric mean fold-change in t½ (95% CI)</td>
<td>p value</td>
</tr>
<tr>
<td>Sex at birth (female vs male)</td>
<td>1.33 (1.06-1.68)</td>
</tr>
<tr>
<td>BMI (≥ median vs < median)</td>
<td>1.31 (1.06-1.63)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.00 (0.99-1.01)</td>
</tr>
<tr>
<td>Weight (kgf)</td>
<td>1.01 (1.00-1.01)</td>
</tr>
<tr>
<td>Race‡</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.11 (0.82-1.50)</td>
</tr>
<tr>
<td>Non-Hispanic Asian</td>
<td>1.11 (0.40-2.45)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>1.30 (0.99-1.72)</td>
</tr>
<tr>
<td>Non-Hispanic or other</td>
<td>0.91 (0.50-1.67)</td>
</tr>
<tr>
<td>Region§</td>
<td></td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>1.23 (0.95-1.59)</td>
</tr>
<tr>
<td>Brazil</td>
<td>1.11 (0.83-1.50)</td>
</tr>
<tr>
<td>Current Smoker (yes vs no)</td>
<td>0.80 (0.56-1.13)</td>
</tr>
<tr>
<td>Injections, n</td>
<td></td>
</tr>
<tr>
<td>Cohort 1</td>
<td>1.09 (0.88-1.35)</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>0.88 (0.69-1.22)</td>
</tr>
<tr>
<td>Cohort (2 vs 1)</td>
<td>1.02 (0.82-1.28)</td>
</tr>
</tbody>
</table>

CAB-LA Single Dose Study

<table>
<thead>
<tr>
<th>Protocol</th>
<th>HPTN 083</th>
<th>ViiV/GSK 201767*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>3 mL (600mg)</td>
<td>3 mL (600mg)</td>
</tr>
<tr>
<td>Frequency</td>
<td>Q 8 wks for 3 years</td>
<td>Single dose</td>
</tr>
<tr>
<td>Injection Site</td>
<td>Ventrogluteal or Dorsogluteal</td>
<td>Ventrogluteal</td>
</tr>
<tr>
<td>Needle Gauge</td>
<td>21, 23, 25 gauge</td>
<td>22 gauge</td>
</tr>
<tr>
<td>Needle Length</td>
<td>BMI <30 - 2.5-3.8 cm</td>
<td>9-15 cm</td>
</tr>
<tr>
<td></td>
<td>BMI >30 - 5.1 cm</td>
<td>with ultrasound guide</td>
</tr>
<tr>
<td>Z tracking</td>
<td>Not specified</td>
<td>Yes</td>
</tr>
<tr>
<td>PK Sampling</td>
<td>Plasma</td>
<td>Plasma, RT, RF, VT, CT, CVF</td>
</tr>
<tr>
<td>MRI</td>
<td>No</td>
<td>Day 1, 3, 7</td>
</tr>
</tbody>
</table>

*Fuchs HIV R4P 2021; *2 Site PK intensive study, Hopkins & Pitt*
CAB-LA Single Dose Study

- Median plasma CAB above targets Wk 8 (>4× PA-IC₉₀) & Wk 12 (>PA-IC₉₀)
- Median CAB cervical, vaginal, & rectal tissue >1× PA-IC₉₀ through Wk 4

In vitro 4× PA-IC₉₀ (0.664 µg/mL)
In vitro 1× PA-IC₉₀ (0.166 µg/mL)

Error bars = minimum and maximum CAB concentrations

Fluid LLOQ (0.0000625 µg/mL)
Tissue LLOQ (0.00005 µg/mL)

Weld et al. HIVR4P 2021; Virtual. Slides OA669.
<table>
<thead>
<tr>
<th>Ratio to plasma, geometric mean (95% CI)</th>
<th>Cervical tissue (n=7)</th>
<th>Rectal tissue (n=13)</th>
<th>Cervicovaginal fluid (n=7)</th>
<th>Rectal fluid (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max}</td>
<td>0.20 (0.16-0.25)</td>
<td>0.10 (0.08-0.11)</td>
<td>0.13 (0.07-0.26)</td>
<td>0.62 (0.31-1.25)</td>
</tr>
<tr>
<td>$\text{AUC}_{0-\text{Wk4}}$</td>
<td>0.16 (0.09-0.26)</td>
<td>0.10 (0.09-0.11)</td>
<td>0.10 (0.04-0.25)</td>
<td>0.55 (0.23-1.28)</td>
</tr>
<tr>
<td>$\text{AUC}_{0-\text{Wk8}}$</td>
<td>0.15 (0.07-0.33)</td>
<td>0.11 (0.09-0.13)</td>
<td>0.09 (0.04-0.23)</td>
<td>0.49 (0.21-1.11)</td>
</tr>
<tr>
<td>$\text{AUC}_{0-\text{Wk12}}$</td>
<td>0.15 (0.07-0.33)</td>
<td>0.11 (0.09-0.13)</td>
<td>0.09 (0.04-0.23)</td>
<td>0.49 (0.21-1.11)</td>
</tr>
</tbody>
</table>

• Each tissue and fluid matrix had lower CAB C_{max} and AUC values vs plasma
• Slightly higher ratios seen in cervicovaginal tissue to plasma than rectal tissue to plasma
CAB-LA IM Injection Site MRI Anatomy

- ViiV/GSK Multi-compartment tissue study

Correlates of Depot Location & Plasma PK

Plasma CAB ng/mL

Depot Surface Area mm²

Days

0 7 14 21 28 35 42 49 56 63 70 77 84

r = 0.83

Fuchs. HIV R4P 2021
Implantable ARV-Eluting Devices

- Sustained release of PrEP drugs with constant release over time
- User-independent, subcutaneous implant
- Biodegradable
- Compatible with existing contraceptive implant trocar applicators

<table>
<thead>
<tr>
<th>Formulated drug core</th>
<th>Channels or Permeable membrane</th>
<th>Biological fluid in</th>
<th>Dissolved drug out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved drug (saturated)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compatibility with Existing Trocars

- Implanon
- Jadelle

Courtesy Marc Baum & Ariane van der Straten
PK Advantages of Implant vs. Injection

- Flattens peaks & troughs (optimize safety/efficacy)
- Eliminates long PK tail
- Reversibility eliminates oral lead-in
- Requires medical procedure vs. non-MD injection
- Limited by potency & PK of candidate drug
Islatravir Once Yearly Implants

- Radiopaque (barium) implants
- Adverse events less frequent than CAB-LA injection site reactions

Matthews R et al, vCROI March 8, 2021
ISL-TP PBMC PK Dose Proportional

- Mean (SD) ISL-TP PBMC profile overlaid Population PK model median (95% PI)\(^1\)
- 60 mg or 120 mg QM po doses exceeded target concentration with first dose
- P016 ongoing clinical study\(^2\) - Preliminary tissue PK suggest rapid, sustained, and adequate distribution of ISL to target tissue sites comparable to previous ISL studies\(^1\)

ISL, islatravir; PBMCs, peripheral blood mononuclear cells; PK, pharmacokinetics; PI, prediction interval; QM, once monthly; SD, standard deviation; TP, triphosphate.

Lenacapavir Capsid Inhibitor

- Multiple mechanisms of action, pM potency, very long half-life
Lenacapavir Supports q6m SC injection

Begley R et al. Safety and PK of subcutaneous GS-6207, a novel HIV-1 capsid inhibitor. Oral abstract PS13/1. EACS 2020
Merck & Gilead Announce Collaboration

- Islatravir & Lenacapavir
- Long-acting formulations
- Oral & Injectable (SC)
- Requires drug pair with potency & long half-life
- Oral combo trials 2021

Press release March 15, 2021; Smith Collection/Gado/Getty Images & Justin Sullivan/Getty Images
Long-Acting Dapivirine Vaginal Ring

- **Vaginal Ring Design**
 - Silicone matrix ring, 25 mg of dapivirine (NNRTI)
 - Monthly replacement, trivial systemic exposure

- **Two phase III placebo-controlled trials**
 - Well tolerated
 - Reduced HIV incidence ~30%
 - Greater protection (up to 85%) with high adherence

- **OLEs High uptake, better adherence**

- **90-day Ring in Development**

- **EMA favorable scientific review**

Baeten, et al., ASPIRE & Nel, et al., The Ring Study (IPM) NEJM 2016; International Partnership for Microbicides (IPM)
Geometric mean T_{max} ranged from 16-25 days in plasma and 1-7 days in CVF
Decrease in DPV concentrations 4 hours after ring removal was comparable across arms, in both plasma and CVF

Liu vCROI 2021
Objectives

- Describe benefits of PrEP choices for HIV prevention
- Understand differences of long-acting PrEP
- Discuss ongoing development of on demand PrEP
- Discuss development of multi-purpose prevention technologies (MPTs)
On Demand Oral

- **Ipergay – Effective**
 - RCT
 - 2 TDF-FTC 2 - 24 hours before sex
 - 3rd 24 hours after the first dose
 - 4th 24 hours after the 3rd
 - 40% < weekly dosing

- **Prevenir – Popular**
 - Open label,
 - ppts select on demand (54%) or daily (45%);
 - Acquisition Risk 0 (0.0, 0.7) and 0 (0.0, 0.8), no infections in 506 & 443 PY, respectively

Molina NEJM 2015; Molina IAS 2018
On Demand Topical

- CAPRISA 004 TFV Vaginal Gel – Highly effective when used

mITT Analysis

PK-Adjusted Log Reg – 73% RRR

TFV/EVG Topical Inserts (CONRAD)

- Goal:
 - Dual compartment (vaginal & rectal) inserts
 - Discreet, inexpensive
 - On demand,
 - Easy to self-administer

- Tenofovir alafenamide (TAF) & Elvitegravir (EVG)

- Phase 1 FIH Study – Single vaginal dose
 - Genital and systemic safety
 - Multi-compartmental PK
 - Acceptability
 - Mucosal PD in vitro

Thurman HIV R4P Virtual 2021; ¹ Dobard et al. CROI 2019, Abstract #101; Dobard et al. CROI 2020, Abstract #88
CONRAD 146 Study Design

Product: Vaginal insert containing TAF/EVG (20 mg/16 mg)

Participants: 16 Healthy women, 18 – 50 years old, HIV-1 uninfected, non-pregnant, low STI risk

Visits: 4 clinical visits & follow up phone call

Site: Eastern Virginia Medical School, Norfolk, VA

Randomization:

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Dose</th>
<th>Sample Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>TAF/EVG (20mg/16mg)</td>
<td>4h, 2d, & 7d after dosing</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>TAF/EVG (20mg/16mg)</td>
<td>1d, 3d, & 7d after dosing</td>
</tr>
</tbody>
</table>
Achieved Targets

- Vaginal insert safe & acceptable
- Concentration Targets
 - High tissue concentrations of TFV-DP (> 1000 fmol/mg) & EVG (> 1 ng/mg)
 - Durable up to 72 hours post use
- Modeled PD supports MPT activity against HIV-1 and HSV-2
On Demand & Behaviorally-Congruent PrEP

- *Behaviorally-congruent* medicates product already in common use

- Common health fortification of existing products
 - Fluoridated drinking water & toothpaste
 - Calcium & vitamin fortified bread
 - Vitamin A & D fortified milk

- PrEP-medicated Sexual Lubricants
 - Very high levels (>85%) of sexual lubricant use among MSM
 - Modest levels among women, but higher among FSW (>60%)

- PrEP-medicated Douches
 - High levels of anal douching among MSM (>80%)
 - Not well studied among women, but modest to high among FSW (22-56%)
Rectal Microbicide Candidates

<table>
<thead>
<tr>
<th>Drug</th>
<th>MOA</th>
<th>Formulation</th>
<th>Insertion</th>
<th>B-C</th>
<th>Toxicity</th>
<th>Acceptable</th>
<th>Explant</th>
<th>NHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F/TDF</td>
<td>NRTI</td>
<td>tablet</td>
<td>oral</td>
<td></td>
<td>minor</td>
<td>High</td>
<td>0.6</td>
<td>RV</td>
</tr>
<tr>
<td>UC781</td>
<td>NNRTI</td>
<td>gel</td>
<td>applicator</td>
<td>none</td>
<td>High</td>
<td>reduced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFV VF</td>
<td>NRTI</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>AE's</td>
<td>Modest</td>
<td>0.3-0.5</td>
<td>RV</td>
</tr>
<tr>
<td>TFV RGVF</td>
<td>NRTI</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>none</td>
<td>Modest</td>
<td>0.7-0.8</td>
<td>R</td>
</tr>
<tr>
<td>TFV RF</td>
<td>NRTI</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>none</td>
<td>High</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TFV</td>
<td>NRTI</td>
<td>liquid</td>
<td>bottle</td>
<td>x</td>
<td>none</td>
<td>High</td>
<td>1.6</td>
<td>R</td>
</tr>
<tr>
<td>DPV</td>
<td>NNRTI</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>none</td>
<td>High</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>DPV</td>
<td>NNRTI</td>
<td>gel</td>
<td>lubricant</td>
<td>x</td>
<td>none</td>
<td>High</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>MIV-150/Zn/C</td>
<td>NNRTI/bind</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>none</td>
<td>High</td>
<td>0.5</td>
<td>R</td>
</tr>
<tr>
<td>IQP-0528</td>
<td>NNRTI</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>minor</td>
<td>High</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>MVC</td>
<td>CCR5</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>none</td>
<td>High</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>OB-002H</td>
<td>CCR5</td>
<td>gel</td>
<td>applicator</td>
<td></td>
<td>none</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-GRFT</td>
<td>binding</td>
<td>douche</td>
<td>bottle</td>
<td>x</td>
<td>analysis</td>
<td>analysis</td>
<td>analysis</td>
<td>(V)</td>
</tr>
<tr>
<td>TAF/EVG</td>
<td>NRTI/ISTI</td>
<td>insert</td>
<td>manual</td>
<td></td>
<td>ongoing</td>
<td>ongoing</td>
<td>ongoing</td>
<td>V</td>
</tr>
</tbody>
</table>

MOA, mechanisms of action; B-C, behaviorally-congruent; Explant ex vivo HIV challenge; NHP macaque
Objectives

- Describe benefits of PrEP choices for HIV prevention
- Understand differences of long-acting PrEP
- Discuss ongoing development of on demand PrEP
- Discuss development of multi-purpose prevention technologies (MPTs)
Multipurpose Prevention Technologies (MPT)

- **Concept:**
 - HIV risk associated with other health risks
 - Sexually transmitted infections
 - Pregnancy
 - Co-formulation enhances adherence
 - Behavioral-congruence w/ existing contraceptive practice

- **MPT IVRs – phase I / early phase II**
 - Dual Purpose Pill (DPP)
 - Tenofovir / levonorgestrol ring
 - Dapivirine / levonorgestrol ring

- **Development trade-offs?**
MPTs in Development & Ring Technology

<table>
<thead>
<tr>
<th>MPT Type</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Phase IIIb/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectal insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectal gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal film</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral pill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-acting injectable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro-array patch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **HIV + other STIs:**
 - Total: 10

- **HIV + other STIs + Contraception**:
 - Total: 4

- **HIV + Contraception**:
 - Total: 11

- **Contraception + other STIs**:
 - Total: 3

Adapted from: The initiative for MPTs (mPT): Practical Development Guidance; Technical Advisory Group (TAG); 2021.Perspectives Report
90-Day DPV/LNG Vaginal Ring PK

Dapivirine Cervicovaginal Fluid
t₁/₂: 0.4 days (IQR 0.3-0.9)

Levonorgestrel Cervicovaginal Fluid
t₁/₂: 0.2 days (IQR 0.2-0.2)

Median concentration, ng/g

Days from initial vaginal ring insertion

DPV, Continuous use
DPV, Cyclic use

LNG, Continuous use
LNG, Cyclic use

Achilles. MTN-044/IPM 053/CCN019. HIV R4P 2021
90-Day MPT VR Conclusions

- Periodic removals likely w/ user-controlled rings as with many contraceptives
- Plasma drug concentrations above target w/ continuous use
 - [LNG] ≅ use of effective LNG-based contraceptives
 - [DPV] ≅ use of 25mg DPV ring
- Drug clearance is rapid from vaginal fluid
- Periodic removals did not impact
 - Safety—no toxicities observed
 - Vaginal bleeding profiles
- Frequent expulsions forced reformulation to less stiff ring

Gaps: Which compartments & concentrations critical for PrEP?
 - Plasma, vaginal fluid, and/or tissue concentrations?
Pregnancy & HIV Prevention

Uganda (N=200)

Pregnancy prevention

Top 3 methods
- Male condom (only): 25%
- Injectable: 23%
- Implant: 15%

HIV prevention

Top 3 methods
- Male condom: 68%
- Male circumcision: 49%
- Other: 15%

Zimbabwe (N=200)

Pregnancy prevention

Top 3 methods
- Male condom: 80%
- Male circumcision: 16%
- Other: 16%

HIV prevention

Top 3 methods
- Oral pills: 59%
- Implant: 20%
- Male condom (only): 8%
Interest in Dual Purpose Prevention

Thinking about your current circumstances, would you prefer to use a “2 in 1” or two separate products?

- **Ease of use:** 1 thing to remember instead of 2
- **Framing:** Avoid topic of HIV prevention with partner by saying product is just for family planning
- **Access burden:** Fewer clinic visits

- **Side effects:** Simultaneous use of two medicines
- **Pregnancy desire necessitates product switch**
- **Drug volume:** Too much in the body

No differences by sex.
Ideal Product Activity: Couple Preferences

Form
- Oral tablet: 58% (Uganda), 73% (Zimbabwe)
- Vaginal ring: 12% (Uganda), 12% (Zimbabwe)
- Vaginal insert: 21% (Uganda), 10% (Zimbabwe)
- Vaginal film: 10% (Uganda), 6% (Zimbabwe)

Vaginal product: 44% UGA, 27% ZIM

Duration
- Use before sex:
 - Uganda: 11% (4%)
 - Zimbabwe: 1% (10%)
- Use daily:
 - Uganda: 35% (6%)
 - Zimbabwe: 3% (6%)
- Use weekly:
 - Uganda: 35% (46%)
 - Zimbabwe: 52% (35%)
- Use every 2-3 months:
 - Uganda: 51% (88%)
 - Zimbabwe: 49% (7%)

How vagina feels during sex
- No changes: 51% (88%)
- Vagina feels wetter: 49% (7%)
- Vagina feels drier: 0% (6%)

- Uganda: No changes (51%), Vagina feels wetter (49%), Vagina feels drier (6%)
- Zimbabwe: No changes (88%), Vagina feels wetter (7%), Vagina feels drier (6%)
Ideal Product Activity: Couple Preferences

Effect on Menses
- Bleeding may be heavier: 55% (Uganda), 47% (Zimbabwe)
- Spotting or bleeding between menses: 46% (Uganda), 53% (Zimbabwe)

Return to Fertility
- Immediate: 34% (Uganda), 50% (Zimbabwe)
- 3 months after stopping use: 35% (Uganda), 37% (Zimbabwe)
- 6 months after stopping use: 32% (Uganda), 14% (Zimbabwe)

Type of Protection
- Protects against all ways of getting HIV: 99% (Uganda), 98% (Zimbabwe)
- Only protects against HIV during vaginal sex: 2% (Uganda), 2% (Zimbabwe)
Comparing PrEP Efficacy, NNT, Resistance

<table>
<thead>
<tr>
<th>Study</th>
<th>Drug</th>
<th>P-YR</th>
<th>PPTs</th>
<th>Infect’s</th>
<th>ACT Incid</th>
<th>PL Incid</th>
<th>RRR mITT</th>
<th>RRR on Rx</th>
<th>NNT</th>
<th>ACT Resist</th>
<th>PL Resist</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPrEx</td>
<td>F/TDF</td>
<td>3324</td>
<td>2499</td>
<td>36</td>
<td>2.2</td>
<td>3.9</td>
<td>44 (15, 63)</td>
<td>92 (40, 99)</td>
<td>59</td>
<td>2 (6%)</td>
<td>1</td>
</tr>
<tr>
<td>HPTN 083</td>
<td>F/TDF</td>
<td>3187</td>
<td>2247</td>
<td>42</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6 (14%)</td>
<td>-</td>
</tr>
<tr>
<td>IPERGAY</td>
<td>F/TDF prn</td>
<td>216</td>
<td>199</td>
<td>2</td>
<td>0.9</td>
<td>6.6</td>
<td>86 (40,98)</td>
<td>100 ()</td>
<td>18</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Discover</td>
<td>F/TDF</td>
<td>4386</td>
<td>2665</td>
<td>15</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>21%</td>
<td>-</td>
</tr>
<tr>
<td>Discover</td>
<td>F/TAF</td>
<td>4370</td>
<td>2670</td>
<td>7</td>
<td>0.2</td>
<td>- *47 (19, 115)</td>
<td>-</td>
<td>-</td>
<td>0 (0%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HPTN 083</td>
<td>CAB</td>
<td>3204</td>
<td>2241</td>
<td>16</td>
<td>0.4</td>
<td>- *68 (42, 84)</td>
<td>-</td>
<td>-</td>
<td>5 (31%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Partners</td>
<td>F/TDF</td>
<td>~2600</td>
<td>1579</td>
<td>13</td>
<td>0.7</td>
<td>2.0</td>
<td>67 (44,81)</td>
<td>86 (57, 95)</td>
<td>75</td>
<td>5 (38%)</td>
<td>2</td>
</tr>
<tr>
<td>Partners</td>
<td>TDF</td>
<td>2615</td>
<td>1584</td>
<td>17</td>
<td>0.5</td>
<td>2.0</td>
<td>75 (55, 87)</td>
<td>90 (56, 98)</td>
<td>2</td>
<td>12%</td>
<td>-</td>
</tr>
<tr>
<td>CDC TDF2</td>
<td>F/TDF</td>
<td>1563</td>
<td>1219</td>
<td>9</td>
<td>1.2</td>
<td>3.1</td>
<td>62 (22, 83)</td>
<td>-</td>
<td>67</td>
<td>1 (11%)</td>
<td>1</td>
</tr>
<tr>
<td>HPTN 084</td>
<td>F/TDF</td>
<td>1939</td>
<td>1610</td>
<td>36</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>pend</td>
<td>pend</td>
<td>pend</td>
</tr>
<tr>
<td>Ring Study</td>
<td>DPV</td>
<td>2805</td>
<td>1959</td>
<td>56</td>
<td>4.1</td>
<td>6.1</td>
<td>31 (1, 51)</td>
<td>-</td>
<td>50</td>
<td>9 (16%)</td>
<td>14</td>
</tr>
<tr>
<td>ASPIRE</td>
<td>DPV</td>
<td>4280</td>
<td>2629</td>
<td>68</td>
<td>3.5</td>
<td>4.5</td>
<td>27 (1, 46)</td>
<td>67 (23, 84)</td>
<td>100</td>
<td>8 (12%)</td>
<td>10</td>
</tr>
<tr>
<td>HPTN 084</td>
<td>CAB</td>
<td>1953</td>
<td>1614</td>
<td>4</td>
<td>0.2</td>
<td>- *89 (68,96)</td>
<td>-</td>
<td>-</td>
<td>pend</td>
<td>pend</td>
<td></td>
</tr>
</tbody>
</table>

Compared to F/TDF
More CHOICE, Better Uptake & Persistence

<table>
<thead>
<tr>
<th></th>
<th>Systemic</th>
<th>Vaginal</th>
<th>Rectal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-acting</td>
<td>Oral (1m)</td>
<td>Vaginal ring (1m-3m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Injectable (2m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implant (1yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Acting</td>
<td>Oral (qd)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Demand</td>
<td>Oral (2+1+1)</td>
<td>Barrier Gel, Film, Insert</td>
<td>Barrier Insert Lubricant (BC) Douche (BC)</td>
</tr>
</tbody>
</table>
Questions?
Thank You for Your Attendance!
Please visit us at:
www.prn.org